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Abstract. Ring signatures play crucial roles in cryptographic toolkits,
providing the signer with both anonymity and unforgeability. Over the
years, numerous advancements in ring signatures have been developed to
address a wide range of application scenarios. However, most of them do
not consider that disclosed message-signature pairs are publicly verifiable,
resulting in a loss of privacy. To tackle this dilemma, we focus on the
notion of Designated-Verifier Ring Signatures (DVRS), in which only
a designated verifier can ascertain the signature’s origin and validity,
while others cannot. Unlike directly encrypting a signature to prevent
verification, DVRS remain effective even if the designated verifier’s secret
key is leaked or stolen, enabling enhanced privacy.

After clarifying the necessities and strong definitions of DVRS, we
provide a generic construction based on the Extended Type-T* Canonical
Identification. This newly defined three-move Canonical Identification
can be instantiated from different hardness assumptions. Subsequently,
we present two settings. The first one is based on the discrete logarithm
(DL) and Decisional Diffie-Hellman (DDH) assumptions. A novel zero-
knowledge argument system, Minus Argument, is also devised to reduce
signature sizes to logarithmic while not requiring any trusted setup. The
second one is based on lattice, which is believed to be quantum-resistant.
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1 Introduction

Ring Signatures, introduced at the beginning of this century [22], are a type
of signature that allows the signer to authenticate messages while concealing
its identity within an ad hoc set of members chosen by itself (called ring). For
the signer, the advantages include no group manager or group secret sharing
setup, no joining procedure, etc, and basic security properties encompass both
unforgeability inherited from digital signatures and new added anonymity. The
anonymity renders it infeasible for anyone, including verifiers, to identify the
actual signer within a ring. This enhances the privacy of signer’s identity, making
it well-suited for anonymous authentication [17,26].

While enhancing anonymity, in scenarios where a signer intends to disclose
private information, it becomes necessary to restrict entities that are capable
of verifying signatures. A related primitive, known as Designated- Verifier Signa-
tures (DVS) [12], allows the designated verifier to generate a simulated signature
that appears indistinguishable from one produced by the original signer. This
simulation ensures only the designated verifier can be convinced that a signature
indeed from the original signer rather than itself, while others lack the ability
to make the distinctions and will not trust the signature. Thus, the designated
verifier property is achieved while maintaining public verifiability. To distinguish
it from later concepts, this property is known as weak designated verifier.

In fact, the above weak designated verifier is often insufficient, necessitating
the definition of a strong designated verifier [23,25]. The strong concept aligns
more closely with the literal understanding of “designated verifier”, meaning that
only the designated verifier can verify signatures, while others cannot. Moreover,
even if the designated verifier’s secret key is leaked or stolen, others still cannot
validate the signature. It is also the reason why the strong designated verifier
property cannot be achieved by simply encrypting a conventional signature. In
such cases, if the designated verifier’s secret key is compromised, the signature
can be decrypted and then verified.

In ICISC 2021, Behrouz et al. introduced a ring signature scheme incorporat-
ing a designated verifier [5], which was slightly improved in a subsequent work
[4]. To our knowledge, [9,15,16] also attempt this primitive prior to these studies.
However, all the above schemes exhibit three primary drawbacks:

1. Weak Definition. They only achieve the weak designated verifier property,
while [9,15,16] even lacking rigorous security definitions or proofs.

2. Increased Sizes. The signature sizes of them scale linearly with ring sizes.

3. Pre-Quantum. They based on assumptions such as discrete logarithm and
pairings, rendering them susceptible to the approaching quantum computers.

In this work, we investigate Designated Verifier Ring Signatures (DVRS) with
strong designated-verifier property. Concretely, we have the below contributions.

1.1 Our Contributions

We commence with the definitions of strong Designated-Verifier Ring Signa-
tures, and provide a model that encompasses all the security properties that we
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deem necessary: unforgeability, signer anonymity, and non-transferability. This
model for strong DVRS is novel, and also has the potential for applications or
as building blocks. It should be noted that, compared with directly encrypting
the signature of a conventional ring signature scheme, the advantage lies in that
even if the secret key is leaked or stolen, users other than the designated verifier
still cannot validate the signature, providing enhanced privacy and security.

As for constructions, we begin by giving some intuition about the designing
for Type-T DVRS, which is non-trivial due to the requirement of the simulation
algorithm. To solve the challenge, we develop a new three-move canonical identi-
fication named Extended Type-T* Canonical Identification. Then, we minimize
signature sizes by leveraging commutative group operations, and integrating the
hidden /recovery functions compatible with the optimized construction. Finally,
we obtain TripleRing, a generic construction for strong DVRS. We also provide
the detailed analysis of its correctness and security.

In terms of instantiations, we present two settings from trendy assumptions.
The first is based on DL and DDH, with the merit of requiring only logarithmic
signature sizes. As a contrast, previous schemes that achieve only provide the
weak designated verifier property require linear sizes, representing a significant
reduction. Moreover, the newly devised Minus Argument, may be of indepen-
dent interest for optimizing other cryptographic protocols such as RingCT. The
second is based on lattice, marking the first DVRS scheme that, to the best of
our knowledge, is conjectured to be quantum-resistant (including schemes that
achieved only the weak designated verifier property).

1.2 Roadmap

The remainder of this paper is organized as follows. Section 2 covers algorithm
definitions and security definitions for strong DVRS. Section 3 introduces generic
construction while Section 4 provides efficient instantiations with discussions.
Finally, Section 5 summarizes the whole paper and gives future prospects.

2 Definitions

2.1 Algorithm Definitions

The strong DVRS scheme counsists of five probabilistic polynomial time (PPT)
algorithms DVRS = (Setup, KeyGen, Sign, Verify, Sim) as follows:

— pp + Setup(1*) : The algorithm initializes public parameters pp using A as
input, where A € N is the security parameter. pp is implicit for all algorithms
below if not explicitly mentioned.

— (pk, sk) + KeyGen(pp) : The algorithm generates and outputs a randomized
key pair (pk,sk) from its input pp.

— X + Sign(R, pkp, sk, M) : The algorithm inputs the public key ring R =
{pky, -+, pky} and designated verifier’s public key pkp,, the signer’s secret
key sk, and a message M. It requires that the signer’s public key pk,. € R.
Finally, it outputs a signature X' for the message M.
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— {0,1} « Verify(R, pkp, skp, M, X) : The algorithm inputs the public key ring
R and designated verifier’s key pair (pkp,skp), the message M and signature
Y. If (M, X)) is valid, it outputs 1. Otherwise, outputs 0.

— X' + Sim(R, pkp,skp, M) : The algorithm inputs the public key ring and
designated verifier’s key pair (pkp,skp), and a message M. Finally, it outputs
a simulated signature X’ for the message M.

The strong DVRS scheme should satisfy correctness: any signature X' gen-
erated by the honest signer and any simulated signature X’ generated by the
honest designated verifier should both successfully pass the Verify.

Definition 1 (Correctness). The DVRS scheme DVRS satisfies correctness,
if the following verification equations hold.

Verify(R, pkp, skp, M, X = Sign(R, pkpy, sk, M)) — 1.

Verify(R, pkp,skp, M, 3 = Sim(R, ka,skD,M)> =1.

2.2 Security Definitions

We use the following oracles to capture the adversary A’s capabilities.

1. Corruption Oracle sk < Ocq(pk): On query a public key pk € Sy, it
returns the secret key sk € S, such that (pk, sk) < KeyGen(pp).

2. Signing Oracle X' < Osign (R, pkp, pk, M): On query the public key ring
R, the designated verifier’s public key pkp, the signer’s public key pk, and a
message M, it returns a valid signature X such that X' < Sign(R, pk, sk, M),
where (pk, sk) «+ KeyGen(pp) and pk € R.

3. Verification Oracle {0,1} <+ Overity (R, pkp, M, X): On query the public
key ring R and designated verifier’s public key pkp, the message M and
signature Y. If (M, X)) is valid, it outputs 1. Otherwise, it outputs 0.

4. Simulation Oracle Y’ + Ogin(R, pkp, M): On query the public key ring
R and designated verifier’s public key pkp, and a message M, it returns a
valid simulated signature X’ such that X’ « Sim(R, pkp,skp, M).

Unforgeability. In the strong DVRS scheme, unforgeability implies the fact
that any user whose public key does not belong to the public key ring R, should
be unable to produce a valid signature on behalf of R. We inherit and modify
the strongest definition of unforgeability w.r.t. insider corruption in [6], which
stipulates that even if the adversary can adaptively corrupt some honest users
and acquire their secret keys, it still cannot succeed in forging a new signature.

Definition 2 (Unforgeability w.r.t. insider corruption). Given the strong
DVRS scheme DVRS and a PPT adversary A, consider the following game:

— Keypairs are generated by KeyGen(pp), and the set of public keys S is given
to A, whose cardinality |S| = g.
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— A is given access to Ocor, which returns the set of corrupted public keys Scor-
— A is given access to Osign, Osim, Overify -
— A outputs (R*, pkl,, M*, X*) to the challenger C, and wins if

1. Verify(R*, pkp, sk, M*, X*) = 1.

2. (R*,pkp, M*,---) has not been queried to Osign and Osim.

3. R*U{pkp} € S\Scor-

The advantage is Advy" (\) = |Pr[A wins the game]|.

The DVRS scheme DVRS is unforgeability w.r.t. insider corruption, if for any
PPT adversary A, the above advantage /—\deF()\) s negligible.

Signer Anonymity. In the strong DVRS scheme, signer anonymity implies that
any user (including the designated verifier) attempting to deduce the real signer’s
identity in the ring from a ring signature, would have a negligible advantage
over random guessing among all the ring members. We inherit and modify the
strongest definition of Signer Anonymity against full key exposure in [6], where
the adversary A is given all randomnesses to generate secret keys.

Definition 3 (Signer Anonymity against full key exposure). Given the
strong DVRS scheme DVRS and an unbounded adversary A = (A1, As), consider
the following game:

— Keypairs are generated by KeyGen(pp;r;) for randomly chosen r;, and the
set of public keys S is given to A, whose cardinality |S| = qy.

— A is given access to Osign, Osim, Overify -

— A; chooses the public key ring R* C' S and pk;ko, pki, € R*, the designated
verifier’s public key pk, C S, a message M* € M, and sends them to the
challenger C. C chooses a random bit b <—g {0,1} and computes a challenge

signature X, = Sign(R*, pkp, ski, , M*) and returns. Then, Az, inheriting the

state of A1 and r; for generating R*, attempts to guess b/, and wins if b’ = b.

The advantage is AdviA()\) = |Pr[t/ =b] — % .

The DVRS scheme DVRS is perfect signer anonymity against full key exposure,
if for any unbounded adversary A, the above advantage AdviA (N\) is negligible.

Non-Transferability. In the strong DVRS scheme, Non-Transferability implies
that only the designated verifier can validate the signature, and it cannot be used
to convince others. We adopt the strongest definition to our knowledge, that is,
all the secret keys are given to the adversary A. In other words, when provided
a signature produced by the Sign algorithm, the designated verifier can invoke
the Sim algorithm to yield a simulated signature associated with it, which are
statistical indistinguishable.

Definition 4 (Non-Transferability). Given the strong DVRS scheme DVRS
and an unbounded adversary A = (A1, As), consider the following game:
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— Keypairs are generated by KeyGen(pp), and the set of public keys S is given
to A, whose cardinality |S| = qi. All the secret keys are also obtained by A.
— Ay chooses the public key ring R* C S and pkl. € R*, the designated ver-
ifier’s public key pk}, C S, a message M* € M, and sends them to the
challenger C. C chooses a random bit b <g {0,1} to compute a challenge
signature Xy, and returns, where Xy = Sign(R*, pk},skl, M*) and Xy =
Sim(R*, pkp, sk, M*). Then, Ag, inheriting the state of Ay, attempts to

guess b, and wins if o' = b. The advantage is Adv’\" (\) = |Pr[b/ = b] — 1.

The DVRS scheme DVRS is perfect non-transferability, if for any unbounded
adversary A, the above advantage AdeT()\) 18 negligible.

3 Constructions

In this section, we present TripleRing, a generic construction for strong DVRS.
We begin with our starting point, Extended Type-T* Canonical Identification,
which is also newly defined and can be instantiated from various assumptions.

3.1 Type-T Canonical Identifications and Extensions

To describe generic conversion from identifications to ring signature, the Type-T
Canonical Identification was extracted [1,30]. It proceeds as below.

Let S; and S, denote the spaces for the challenge ¢ and the randomness y.
The definitions for other randomness spaces follow similarly. Moreover, A, Z,V
denote commit function, response function, and verification function respectively.

— pp + Setup(1") : On input the security parameter ), the algorithm defines
public parameters pp and outputs them. pp is implicit for all algorithms
below if not explicitly mentioned.

— (pk, sk) + KeyGen(pp) : The algorithm generates and outputs a randomized
key pair (pk,sk) from its input pp.

— (y,Y) < Proofi(sk) : The algorithm inputs the secret key sk and chooses
y g Sy. Then, it runs the commit function ¥ = A(y), and outputs (y,Y),
where the commitment Y can be public to all.

— ¢+ Ch(Y) : The algorithm inputs the commitment Y, and outputs a random
¢ g S¢ as the challenge.

— z + Proofy(sk, y,c) : The algorithm takes the secret key sk, the input y for
the function A in Proof;, and the challenge ¢ from ch as inputs. It runs the
response function z = Z(sk, y, ¢) to generate and output a response z.

— {0,1} « Verify(pk, z,c) : The algorithm inputs the public key pk, the re-
sponse z and challenge ¢, runs the verification function Y’ = V(pk, z,¢). It
checks ¢ = Ch(Y"). If it holds, returns 1, otherwise returns 0.

Recently, a new Type-T* Canonical Identification was defined [30], with the
following operations and properties added.
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1. The challenge space S, is a commutative group with operation ®, while @
is its inverse operation in this group.

2. If ¢; and ¢y are uniformly distributed in S, then ¢; ® ¢y is also uniformly
distributed in S..

3. The verification function V' (pk, z, ¢) can be split into V;(2) ® Va(pk, ¢), where
® is a commutative group operation for the range of V.

4. The verification function V;j(z) has additive/multiplicative homomorphism,
ie, Vi(21)©Vi(22) = Vi(21 B 22), where @ is a commutative group operation
in the range of z, and the homomorphic operation is efficiently computed.

5. Given the secret key sk matched with pk and ¢, there exists a function Zy
can be efficiently computed such that V1 (Zy (sk, ¢)) = Va(pk,c).

We define an additional simulation function S(pkp,,z,w) that satisfies the
following properties, leading to the Extended Type-T* Canonical Identification.

1. The space S, is a commutative group with operation X, while [1 is its inverse
operation in this group.

2. If wy and wsy are uniformly distributed in &, then w; Kws is also uniformly
distributed in S,,.

3. The simulation function S(pkp,x,w) can be split into Sy (x) & Se(pkp, w),
where [ is a commutative group operation for the range of S.

4. The simulation function S;(z) has additive/multiplicative homomorphism,
ie., S1(x1)8S1(x2) = S1(z1Bx2), where H is a commutative group operation
for the range of =, and the homomorphic operation is efficiently computed.

5. Given the secret key skp matched with pkp and w, there exists a function
Zs can be efficiently computed such that S;(Zs(skp,w)) = Sa(pkp, w).

In particular, we have the special case of the Extended Type-T* Canonical
Identification that simultaneously satisfy the following properties.

— Sy = &, then the operations ® and @ in S, are applicable to S, allowing
X and 1 to be replaced with ® and ©.

— The range of z is the same as that of z, then the operation & in the former
are applicable to the latter, allowing H to be replaced with .

— The range of the simulation function S is the same as that of the verification
function V, then the operation ® in the former are applicable to the latter,
allowing [ to be replaced with ©.

We follow the Special Impersonation under Key Only Attack for our Extended
Type-T* Canonical Identification. It combines aspects of special soundness and
impersonation attacks, effectively addressing the knowledge gap in lattice-based
zero-knowledge proofs [18,29]. For more details, please refer to [30].

Definition 5 (Special Impersonation under Key Only Attack, [30]).
A Canonical Identification {Setup, KeyGen, Proofy, Ch, Proofy, Verify} is special
impersonation under key only attack, if the advantage for a PPT adversary A
to output two valid transcripts for the same commitment is negligible, i.e.,

pp « Setup(1?) Verify(pk, z,¢) = 1
Pr | (pk,sk) «+ KeyGen(pp) : Verify(pk,z’,¢’) =1| < negl()).
z,¢,2',c < A(pp, pk) ctd NedeS,
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3.2 From Extended Type-T* Canonical Identification to TripleRing

We first give some intuition for construction of Type-T DVRS. To make it more
intuitive, we use an example of the Schnorr scheme [24] running in a group G
denoted inside (-), whose secret key is sk and public key is pk = ¢*, and a
message M to be signed. Here, +—g denotes sampling uniformly at random.

To be more precise, as illustrated in Fig. 1, a signer possessing the secret
key sk, (associated with a public key pk, € R = {pky,---,pky}) generates
a signature using the Type-T DVRS.Sign Algorithm. Meanwhile, a designated
verifier with the secret key skp (associated with the public key pkj) generates
a simulated signature using the Type-T DVRS.Sim Algorithm.

Type-T DVRS.Sign(pp, R, pkp, sky, M) Type-T DVRS.Sim(pp, R, pkpy, skp, M)
for j =7 do for j =1do
sample Y s Sy, Wr <5 S, Tr 3 Sz, sample 2] <5 S., 1 5 Se, ¢ <5 Sy,
(Yr <5 Lq, Wr <=5 Lq, Tx <5 Lq) <’3/1 < Lq, N s Lq, ¢ < Lq)
Y = A(yz), Wr = S(pkp, Tr, wr), Yy = V(pky, z1,m), Wi=A(¢),
(Yo =g, Wr =g"" - pkip™) (Y] = g7t - pkll, Wi = g%
ert1 = H(R, pkp, M, Yo, Wr); ch = H(R,pkp, M, Y{, W});
endfor endfor
forj=n+1,--- ,N—-1,N,1,--- ,m—1do for j=2,---,N do

sample z; =5 Sz, wj s Se, ; <5 Sa, sample 2} «s S., W} +3 Sc, ¥; 45 Sz,

(2j <=8 Lq, wj < Lq, Tj <5 Lq) (2] <=5 Lq, W} <5 Lq, T s Lq)
Y; = V(pkj, zj, ¢; @ wy), Wi = S(pkp,z;,w;), Y] = V(pk;, 25, ¢ @ wj), Wi = S(pkp,z},w)),
s AF kST T — T w , o 4w’ " w’.
(Y; =g% pk; » Wi=g" - pkp') <Y7/ = g% ~pkj'/+ i H"; = g% pky)
(i moa Ny+1 = H(R, pkp, M, Y;, W;); ¢j mod N1 = H(R, pkpy, M, Y], W));
endfor
endfor

// Compute the missing zx Compute the missing w} and
I g wy 1

! / ’ !
wy =ncy, v1 = Z(skp, ¢, w);
(wy =mn—cy, *y = ¢ —wi -skp)

return ¥ = (¢}, {21351, {2} 1750, {w) 55

2n = Z(SKn, Y, Cr @ Wi );
(#r = Yr — (Cx + wr) - skr)

return X = (ci, {ZJ};V:ls {z; }ﬁ\:l {wJ};V:l)

Fig. 1. Type-T DVRS.Sign Algorithm and Type-T DVRS.Sim Algorithm

To verify a signature X' = (cq, {zj}évzl, {xj};v:l, {wj}é»v:l), forj=1,---,N,
it sequentially reconstructs Y; = V(pk;, z;,¢; @ wy), W; = S(pkp, z;, w;), and
the challenge ¢j4+1 = H(R, pkp, M,Y;, W,). Finally, it checks correctness of ¢; z
H(R,pkp, M, YN, Wy), and outputs 1 (valid)/ 0 (invalid). The verification for
a simulated signature is in the same way. According to the generation of z;
in the Type-T DVRS.Sign Algorithm (w. and /. in the Type-T DVRS.Sim
Algorithm), it is not hard to know that the verification is established.

We further develop Type-T DVRS to TripleRing. Roughly, we separate the
ring formed in Type-T DVRS Sign (Sim) Algorithm into a Challenge-Ring and
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a Response-Ring (Simulation-Ring). The underlying idea is motivated by [30]:
using the commutative group operation ® (e.g., modular addition and modular
multiplication) to separate the verification function V' = V(pk, z,¢) = V1(z) ©
Va(pk,c) (Vi : g%, Vo @ pk® and ® indicates - in the group G) and simulation
function S = S(pkp,z,w) = S1(x) ® Sa(pkp,w) (S1 : g%, 5o : pkp).

As depicted in Fig. 2, the signer forms the Response-Ring and connects it
with the Challenge-Ring (during the signing), whereas the designated verifier
forms the Response-Ring and connects it with the Simulation-Ring (during the
simulation). The hidden/recovery functions that are compatible were also in-
tegrated, keeps the total signature sizes small while enhancing the designated
verifier property from weak to strong. The naming of TripleRing also originates
from the formation of three interconnected rings.

V; (pky, ¢ @ wy), Sz (pkp, wy) , ,
? v e V; (pky, c; @ wy),

N~ — ;
' / (@) — S»(pkp, !
V, (pky, cly @ Wi, _ \!/ @\ 2 (Pkp, wy) I o

Sekowy) (o)

Response-Ring |
(@) V2 (PKrei1, Cras @ Wren) | ) \

S2(Pkp, Wr1) @ (3) Vy (psk,g_]l(, c,’,_,1 ®) w,;gl) \‘
2(PKp, Wr—1) / ‘
Yy, w,;] I Simulation-Ring |

1) Yz = AQym) o C1’1+14’ @ //

(6) A Wn = S(pkp, Xz, Wrr) /(4) o~
7 = 2k cx @ wi) 1, V) O we 5

r= E(ka- Zys xn)
4

¥
A ) T~ (B)wr =nQcy,
“\z) Challenge-Ring T~ x) = Z(skp, p, wy)
A O = Epkp, zi x7)
=1\
\ ; N N
\. Real Sig 2= (r {cicy, Wi,
DD simulaedsig 3 = (0 ()l D)
[ T cy

Fig. 2. Our TripleRing generic construction for strong DVRS

N
j:la

and {z; }é\]:1 from their respective ranges. Then, it forms a Response-Ring via
the group operation ®. We first add up all V4 according to commutative:

Yz = A(yx) © () Va(pk;, ¢; @w;), W = S(pkp, 2, we) ©(-) Sa(pkp, wy). (1)
i#n i#n
Then, it forms a Challenge-Ring by computing ¢ = H(R, pkp, M, Y, W,) and
the missing challenge ¢z = ¢ @ (@), ¢;)- The following equation should hold:

Cl®02®"'®cN:c:H(R7kaaM7YT(aWT{')' (2)

To be more specific, the signer first picks yr <—¢ Sy and {c¢;};j4x, {w;}
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Finally, the Challenge-Ring is connected via the computation of the challenge
zr = Z(skn, Yry Cx @ wy). After adding a hidden layer to derive r from (z, z.),
the signature is X' = (r, {¢; }f;l, {w; }évzl) During the simulation, the designated
verifier, who holds the secret key skp, can run a similar procedure to the above
to generate a simulated signature X’ = (', {c/}_ ), {w}}}_,). The simulated
signature X’ can be proven indistinguishable from the real signature X.

During the verification of X', the designated verifier first recover (zr,zr).
Then, using underlying relations V(pk,, zr, ¢z @wz) = Vi(27) © Va(pk,, ¢xr @ wy)
and S(pkp, r, wr) = S1(xr) © S2(pkp,ws), it can reconstruct (1) as

N N
Yo = Vi(z) © (D Valpkj ¢ @wy), Wr = Si(ax) © () Salpkp,wy).  (3)

j=1 j=1

Finally, it checks whether H(R, pkp, M, Y, W) z ®;V:1 ¢; to verify (2), which
represents the legality of Y. The verification of the simulated X’ is similar.

3.3 TripleRing: A Generic Construction for strong DVRS

TripleRing works as below, following the notations consistent with Section 3.2.

— pp « Setup(1?) : On input the security parameter ), this algorithm defines
the message space M, the secret key space Sq and public key space Sy,
the space S, and challenge space S, (we let S,, = S as in the special
case in Section 3.1). It also defines the hash function H : {0,1}* — S,
commit function A, response function Z, verification function V= V; ©
V4, simulation function S = S; ® S, and hidden function E and recovery
function F'. Finally, it outputs them as public parameters pp. pp is implicit
for all algorithms below if not explicitly mentioned.

— (pk, sk) + KeyGen(pp) : The algorithm generates and outputs a randomized
key pair (pk,sk) from its input pp.

— X <« Sign(R, pkp, skr, M) : On input {R, pkp,skr, M}, it runs as below.

1. Chooses yr < Sy and {c¢;}j2x <3 S, {wj}é»v:l g Se, {xj}évzl —g Sy;
2. Computes

Ve = A(yx) © () Valpk;,¢; @ wy), W = S(pkp, r, wr) © () S2(pkp, wy),
P A
c=H(R,pkp, M, Y, W), cx=cQ (® ¢j)y  2n = Z(skn,Yr, Cxr @ Wr);
J#T
3. Computes r = E(pkp, 2, ) according to the hidden function E.
The final signature for M is X' = (r, {cj}é»v:l, {wj}évzl).
— {0, 1} « Verify(R, pkp, skp, M, X)) : On input {R, pkp, M, X'}, the algorithm
verifies the signature X as follows.
1. Parses ¥ = (r, {¢;})_, {w;}1.,), and uses the recovery function F(skp, )
to compute Vi(z) and S1(x,);
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2. Computes ¢ = H(R, pkp, M, Y, W), where

N N
Ve = Vi(zx) © (D) Valpky, ¢ @ w;), Wr = Si(zx) © () Sa(pkp, w;);

j=1 j=1
? N . -
3. Checks whether ¢ = );_, ¢;, and returns 1 for valid/ 0 for invalid.
Remarks: Extra checking may be necessary, e.g., rejection samplings [19].
— X'« Sim(R, pkp,skp, M) : On input {R, pkp,skp, M}, it runs as below.
1. Chooses n,{c}}jzr <=5 Sc, {wj}jzn <5 Se, and 27, ¢, {2} }j4x 5 Sy;
2. Computes

Y7 = V(pky, zn,m) © () Valpk,, ¢ @ wh), Wi = A(¢) © () Sa(pkp, w)),

7 pr

¢ = H(R, pkp, M, Y., W), e =cd 2 (Qd)),
J#ET

W =1 ah = Z(skp, ¢, wr);

3. Computes " = E(pkp, 25, z,) according to the hidden function E.

The final simulated signature for M is X" = (1, {c] ;V:h {w] é\'zl)
Theorem 1 (Correctness). TripleRing satisfies correctness in Definition 1.
Proof. We defer it to Appendix A. O

Theorem 2 (Unforgeability). TripleRing has unforgeability w.r.t. insider cor-
ruption in the random oracle model, if the underlying Extended Type-T* Canon-
ical Identification is secure against special impersonation under key only attack,
and the cardinality of the challenge space |Sc| > max{¢qsig(qn+qsig—1); ¢sim (qn+
Gsim — 1)}, where gsig, ¢sim and qn are the number of queries to Signing Oracle
Osign, Stmulation Oracle Osim and Random Oracle H, respectively.

Proof. We defer it to Appendix B. O

Theorem 3 (Signer Anonymity). TripleRing has perfect signer anonymity
against full key exposure in the random oracle model, if the cardinality of the
Cha”enge space |Sc| > ma’X{QSig (qh+qsig_1)7 qsim (qh+qsim_l)}; where qsigs 4sim
and qn, are the number of queries to Signing Oracle Osign, Simulation Oracle Osim
and Random Oracle H, respectively.

Proof. We defer it to Appendix C. O

Theorem 4 (Non-Transferability). TripleRing has perfect non-transferability
in the random oracle model, if the cardinality of the challenge space |S;| >
max{q.sig(Qh + Gsig — 1)7Q3im(Qh + Gsim — 1)}) where Asigs 4sim and qpn are the
number of queries to Signing Oracle Osign, Simulation Oracle Osim and Random
Oracle H, respectively.

Proof. We defer it to Appendix D. O
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Comparison with other DVRS Schemes. The existing DVRS schemes with
rigorous provable security [4,5] both can be viewed as DL-based instances of our
Type-T Construction in Section 3.2. According to our notations, they adopt
the simulation function that differs from that of our DL-based instance in (-).
However, the simulation function they selected makes it difficult to generalize
to assumptions other than DL. We not only achieve the stronger designated
verifier property in our generic construction, but also provide instances which is
logarithmic-sizes/conjectured quantum-resistant in the next section.

4 Instantiations

4.1 TripleRing-EC: A Logarithmic-Size Instance from DL and DDH

Notations and Assumptions. We denote by G a cyclic group of order prime

p. The vector a = [a1,--- ,ay] represents a vector comprising a; € Z,, while
aj;nv) and ajyv represent [ay,---,an] and [an/y1,---,an]. The vector g =
[91,* , gn] denotes a vector comprising g; € G. The notations a+b and a+ b
represent [a;+0b, - ,a,+b] and [a1+by,- -, an+by], respectively. The notations
(a, b) represents the inner product Zj\’=1 a;b;, and a o b denotes the Hadamard
product [a1by,--- ,a,b,]. g represents [gf,---,g%], g* denotes [¢g™,--- , g*"],
and g? denotes [g]*,- -, g%"]. We use <—g denotes uniform random sampling.

Definition 6 (Discrete Logarithm, [24]). Given a cycle group G of prime
order p, and two group elements g, h <—g G that are not the identity element of
G, find s such that h = g°.

We now present the settings for a DL-based Extended Type-T* Canonical
Identification, which can be converted into the strong DVRS using TripleRing.

— The public parameters include the cycle group G of the prime order p. The
space Sy = Z, has a communicative operation @ = + in it, and the challenge
space S. = Z;, has communicative operations ® = + and @ = — in it.

— For user i, the secret key is sk; < Z,, and public key is pk; = g% € G;

— For the designated verifier, the secret key is skp <g Z,, and public key is
pkp = g*P € G;

— The commit function A(y) := ¢¥ for y ¢ Sy = Z,, in Proof; (sk);

— The hash function H : {0,1}* — c € S. = Zy;

— The response function Z(sk,y,c) :=y — ¢ - sk, and we have z = y — ¢ - sk;

— The verification function V(pk, z,¢) = V1(z) - Va(pk, ¢) = g* - pk;

— The simulation function S(pkp, z,w) = S1(x) - Sa(pkp,w) = ¢* - pkp;

— The hidden function E and recovery function F. Since zr,z, € Sy = Zp,
we have both Vi(z;) = ¢*~ and Si(x,;) = ¢g*~ in the group G. We set r =
(r1,72,73,74) = E(pkp, 2r, ) = ("=, pKf5 - 977, 9", pk5 - 9" ) € G x G x
G x G, where u.,u, <g Z,. Then, we have F(skp,r) = (ra/r5*P, rq /r5P) =
(Vi(zx), S1(xx)). Correctness and security are essentially equivalent to those
of the ElGamal PKE [11], which rely on DDH Assumptions.
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We observe that the settings satisfy the following properties in Section 3.1.

1. The challenge space S, = Z,, is a commutative group, with operation ® = +,
while © = — is its inverse operation;

2. If ¢; and ¢y are uniformly distributed in S, then ¢; ® ¢y is also uniformly
distributed in S.. This also holds true for w; ® wy and ¢; ® wy;

3. The verification function V(pk, z,¢) = g* - pk® = V1 (z) - Va(pk, ¢) and simu-
lation function S(pkp,z,w) = ¢g* - pkp = S1(z) - S2(pkp, w), where @ = - is
a commutative group operation for their ranges;

4. The verification function V3 (z) = ¢* and simulation function S (x) = g* have
additive homomorphism, i.e., Vi(21) ® Vi(22) = g1 - g2 = g1 72 = Vi (21 ®
29) and S1(z1) © S1(w2) = g%t - g2 = g"17%2 = S (21 ® x2), where & = +
is a commutative group operation. Besides, the homomorphic operation can
be efficiently computed;

5. Given sk matched with pk and ¢, there exists Zy (sk,c¢) = ¢ - sk such that
Vi(Zv (sk, c)) = g“€ = pk® = Vu(pk, c). Meanwhile, given skp matched with
pkp and z, there exists Zg(skp,w) = w - skp such that S1(Zg(skp,w)) =
g0 = pkp = Sa(pkp, ).

Theorem 5. The above settings constitute an Extended Type-T* Canonical Iden-
tification, which satisfies secure against special impersonation under key only at-
tack in Definition 5, assuming the hardness of the Discrete Logarithm problem.

Proof. We defer it to Appendix E. O

According to TripleRing generic construction, the above settings can be
adapted into a strong DVRS scheme TripleRing-DL, ensuring unforgeability,
signer anonymity, and non-transferability.

Minus Argument. In order to decrease signature sizes into logarithmic, we
devise Minus Argument. Then, we embed it into the above TripleRing-DL to
obtain TripleRing-EC. Prior to it, we revisit Inner Product (IP) Argument in
Bulletproofs [8]. Our Minus Argument can be seen as a generalization of it.
Considering the following relations. Here, we denote {(Public Input; Witness) :
Relation} by the mathematical relation between Public Input and Witness.

((g8.h, P,c); (x,B)) € (GN x GN x G x Zy) x (Z) x ZL)
RIP = N ajq B; N y ;
P = Hj:l gj hj. AN Y= Z,j:l afjdj

Rsum = { (8, P,¢);x) € (GN x G x Z) X Z : P = HjV:l g5’ ANy = Ej\:l a; }-

Specifically, given (g, h, P, ¢), a prover can use IP Argument to convince a verifier
that it has the knowledge of o = [y, -+ , ] € Zi’)\’ and B =[B1, -+ ,0n] € Z;V,
such that P = H;V:l g5’ hfj and ¢ = Z;V:1 a;B;. A straightforward method to
prove Rgum in zero-knowledge is setting h = 1V in IP Argument, while a more
efficient Sum Argument was given in [30]. Both of them use the trick of recursion,

which we generalize to prove the following relation Ryfinus in Algorithm 1.
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Ritinus = { (8,90, P,Q, A); (,8)) € (G x G x G x G x Zp) x (2] x L) :
Minus = P Hi\r:l glf_ij A Q= g5D1+...+5n A A= z;/\,'l o —

J

Z‘/\, 105
(4)

A

lgorithm 1 Non-Interactive Minus Argument (NIMA)

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:

20

21:
22:

23:
24:

25:

26:
27:
28:
29:
30:
31:

1
2
3
4
5:
6
7
8

: procedure NIMA .Proor({pp, g, 9p, P, Q,7, A}, )
7= (L,R,a,3,0,n) « PFr(g,gp, uH/(P‘“”), UH/(Q’””*A), o, 1V, 5,1)
: end procedure
: procedure Pr(g, gp, 4, 0, «, 3,8,1)
if N =1 then
return I7 = (L, R, «, 3,6,7).
else
: Compute N’ = & and add Li, L2, Ri,R2 € G into initially empty lists
L,R:
: yo, = (&N, Bive)s YRy = (e Benn),
L1 = gf;\[,:,l\:’],]’LA/,’YLl7 Ri = g?ﬁ?%”m,
Yoo = OpnNN),  YRa = (Oinvgs M),
Ly = gg:N’],ﬁ’YL2’ Ry = g;[N’:] DR2;
Compute © = H(L1, R1) and y = H(Lz2, R2);
Compute g’ = gff]_\,/]ong/:] €GN gp = g'}’;ryil €Gand &, p',8', 1 € Z{)V/:
& =zt B =2t B 3 By,
8 =y-dpny+y Ny, M =yl mpng YN
return Pr(g’, gp, 4,0, o, B, 8,1');
end if
end procedure

: procedure NIMA .VERIFY(pp, &, gp, P, Q,v, A, Il = (L,R, o, 3,8,7))
Compute P =P. uﬁ/»H/(P,’u,,’Y)’ Q/ _ Q . U('yfA)»H/(Q’v,'yfA>;
Compute for 1 < j <log N:

CU(j) _ H(ng),RY)), y(j) _ H(Léj),Réj)),

Denote x = [w(l)’ e 737(10%1\7)]7 y = [y(l)’ e ’y(logN)}
Compute for 1 <i < N :

)

)

o 1 if the j-th bit of (1 —1) =1
C(4,5) = ) =1
—1 otherwise

b= [ @6, wi= [ @9,

1<j<log N 1<j<log N

Denote ¢ = [¢1,--- ,on], P = [1, -, ¥N];

return 1 (accept).
else
return 0 (reject).
end if
end procedure

if LY PRy =gt 0t P A LY QRY T = g vl (@

4) then

b
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In Algorithm 1. The system parameters pp include a group G of prime order
p, with g = [g1, ..., 9,] and gp as its generators, and two hash functions, H and
H’, mapping from {0, 1}* to Z,. The argument system comprises a NIMA.PROOF
algorithm and a NIMA.VERIFY algorithm. The NIMA.PROOF algorithm takes as
input (pp, g, 9p, P, Q,7, 4, «, ) and produces a proof IT = (L, R, a, 3, 6,n). The
NIMA.VERIFY algorithm inputs (pp, g, gp, P, @,7, A, II) and outputs either 1
(accept) or 0 (reject).

The NIMA.PROOF involves a recursion procedure PF, where 3 = Hle(xj +

a:j_l)lﬁ and n = H?Zl(yj +yj_1)12% in the k-th recursion for z;,y; are the j-th
outputs of H. The [3 and 1 are both known to the verifier and hence it is not
require generators h and s to commit 3 and n in Ly, Ry, Lo, Ry. Therefore, when
proving the relation Rayrinus, We can set h = s = 1%V and save nearly half of the
exponentiations required during the recursion process, compared with directly
extend the argument system for Rip in Bulletproofs to higher dimensions to
prove the relation Rpya. Besides, it is sufficient for r = [gp,--- , gp| with only
one gp € G stored to compute the whole recursion, also reduces overhead.
Inherited from IP Argument [8] and Sum Argument [30], Minus Argument
also satisfies the statistical witness-extended emulation [7,8] for non-trivial DL
relation g,u or a valid witness «, and gp,v or a valid witness &. Informally,
it refers that given an adversary capable of generating an acceptable argument
with a probability, there exists an emulator that can produce a argument with
the same probability along with a witness w. Besides, the emulator is allowed to
rewind the interaction between the prover and verifier to any previous move.

TripleRing-EC. We made Minus Argument (Algorithm 1) compatible with
TripleRing-DL, yielding TripleRing-EC. To make it easier to read, we use the
same color to represent the corresponding equations with (4). We observe that
the underlying relation for verification of TripleRing generic construction is

(Y, W, V1, V3,51, 52) € G; (cj,w;) € Zyp) :
Ryaern =4 L O WG = O Talpkyoc; 9wy) .
ert A Wo(Si(x) L= Oj=1 S2(pkp, w;) = S2(pkp, Q= w;) [’
A H(R,pkp, M,Y, W) = Q" , ¢

J

while the underlying relation for the verification of TripleRing-EC is

(Y, W, V1, Va, 51, 52) GAEG; (Cj,‘/lfjv)‘ €Zy):
Y (Vi(2) 7 =TI ek
AW (Si(2) "t = pki

A H(R,pkp, MY, W)=Y ¢

RVerify—EC =

Therefore, the Triple-EC runs following steps to sign/simulate a message M:

1. Tt runs the Sign/Sim algorithm in TripleRing-DL on input (pp, skr, M, R, pkp)/
(pp,skp, M, R, pkp), and outputs a signature X' = (r, {cj}é\’:l, {wj};-vzl). The
intermediate values of the stage include (Y, Wi, 2z, ).
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2. It defines g = [pky, -+ ,pk,), 9p = pkp, P = Y, ® (Vi(z:)7 L, Q =
We ® (Si(z:)) o = [er + wi,- en +wn], & = [wy,- ,wy],A =
Z;‘V:1 wj,y = Z;y:l(cj +w;). Then, it choose generators u, v <—g G and runs
NIMA.PROOF on input ({pp, g, 9p, P, Q,~, A}, &, d), and returns a proof II.

Finally, the signature is X = (r, Y, W, A, IT). The designated verifier can verify
follow these steps in order: (1) It computes Vi (z,) and S;(z,) according to the
recovery function F(skp,r); (2) It computes ¢ = H(R,pkp, M, Y, Wy),y =
c+AP=Y,0Vi(zx)™t, Q =W, (S1(zx))"}; (3) It runs NIMA.VERIFY
on input (pp,8,9p, P, Q,~, A, II) to verify the proof.

Correctness of TripleRing-EC follows that of TripleRing generic construction
and NIMA. Next, we discuss its security.

Theorem 6. TripleRing-EC satisfies unforgeability w.r.t. insider corruption if
TripleRing-DL is unforgeability w.r.t. insider corruption and NIMA is statistical
witness-extended emulation.

Proof. We defer it to Appendix F. O

Theorem 7. TripleRing-EC satisfies signer anonymity if TripleRing-DL satis-
fies signer anonymity.

Proof. We defer it to Appendix G. O

Theorem 8. TripleRing-EC satisfies non-transferability if TripleRing-DL sat-
isfies non-transferability.

Proof. We defer it to Appendix H. O

According to Theorems 6, 7, 8 and results have been proven in Section 4.1,
we have TripleRing-EC is a strong DVRS scheme that satisfies unforgeability,
signer anonymity, and non-transferability.

Comparison with existing schemes. The signature of TripleRing-EC con-
sists of X = (r,Yn, Wy, A II). Here, (r, Y, W, A) € G* x G x G x Z, and
II = (L,R,a,B3,6,n) € G2loe N x G218 N 7, < 7,,x 7, x Ly, totaling (4log N +6)
elements in G and 5 elements in Z,. For A = 128, the comparison with DL-
based DVRS is shown in Table 1. As far as we know, TripleRing-EC is the first
logarithmic-size DVRS scheme, which reduced size significantly.

Table 1. Comparison of Signature Sizes for DL-based DVRS schemes

# Elements in Signature| Signature Sizes for Ring Sizes N |Asymptotic|Designated

Scheme G Ly g4 98 12 916 Signature | Verifier
(33 Bytes)| (32 Bytes) Sizes Property
4 1 2N +4 |1.1 KB|16.2 KB|256.2 KB|4.0 GB| O(N) Weak
5 1 3N +1 [1.6 KB[24.1 KB|384.1 KB[6.0 GB| O(N) Weak
TripleRing-EC . )
(This work) 4log N + 6 5 0.9KB| 14 KB | 1.9 KB |2.4 KB| O(log N) Strong
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4.2 TripleRing-LB: A Post-Quantum Instance from Lattice

Notations and Assumptions. For an odd modulus ¢, we denote by Z, the set
{0,--+,q — 1}. The matrix AT is the transpose of A, and I,, is n-order identity
matrix. Besides, s <—g S means that s is chosen uniformly at random from the
set S, and x < x means that x is chosen according to the distribution x.

Definition 7 (Discrete Gaussian Distribution, [19]). The Discrete Gaus-
sian Distribution over Z™ centers at v € Z™ with standard deviation o is defined

m _ _ 2
m _ () m _ ST, P id g .
as D', (x) = DL where py', (x) = (W) e 202 s the Gaussian Func-

tion, v = 0 could be omitted, and p (Z™) = > com Py (X).

Definition 8 (SIS, m.¢ Normal Form, [19]). Given a random A’ < ng(m*”)
and A = [I,,||A’], find a vector s € Z}* such that A -s =0 and 0 < [|s| < d.

Definition 9 (LWE, ., .m,y Normal Form, [21]). Given a random A <g Zy*™,
and a probability distribution x over Zq, distinguish (AT, ATs + e) and (AT, v),
where s «— N, e < x™ and v < Ly

Lemma 1 ([20], Theorem 2). Given integersn > 1,q > 2 and m = O(nlogq),
there is a PPT algorithm TrapGen(q,7,m) that outputs a matriz B <g Z;*™
and a trapdoor Ry, such that the distribution of B is negl(n)-far from uniform.
Moreover, for any b = BTs + e, where s € Z is arbitrary, and 0 < |e| <
q/O(V/nlogq) or e < D7, for small enough o, there is a polynomial time
deterministic algorithm Invert(Rg, B, b) that outputs s and e.

Construction of TripleRing-LB. We now present the settings for a lattice-
based Extended Type-T* Canonical Identification, which can be converted into
the strong DVRS using TripleRing. We choose a classic SIS-based Canonical
Identification [19], and an LWE function for the hidden function. The underlying
assumptions include Definition 8 and 9, with rejection sampling techniques [19]
to ensure that outputs reveal no information about the secret key.

— The public parameters include ¢, n, m, k, o, and matrices A’ <—g Zg ™ (m=n) A =
[L,||A’]. The space S, = Z;* has a communicative operation © = + in it, and
the challenge space S, = {v : v € {—1,0,1}* ||v|; < k} has communicative
operations ® = + and @ = — in it.

— For user i, the secret key is sk; = S; <—g {—d,---,0,--- ,d}™** and public
key is pk; = Ty, such that T; = A - S;;

— For the designated verifier, the secret key is skp = (Sp,Rp), and public
key is pkp = (Tp,B), such that Sp «g {—d,---,0,--- ,d}™*k Tp =
A -Sp. Besides, (B, Rp) is a uniform matrix B with trapdoor Rp, generated
according to Lemma 1 and used for hidden/recovery.

Remarks. The user i can also generate (B;, Rp,) and include it in the key-
pairs to maintain consistency with the designated verifier. However, it is not
required when generating a signature, so we omit it to simplify.
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— The commit function A(y) := Ay for y =y g D7, in Proofy (sk);

— The hash function H : {0,1}* - c€S. = {v:v e {-1,0,1}* |v|: < &}

— The response function Z(sk,y,c) :=S-c—y, and we havez=S-c —y;

— The verification function V(pk, z,¢) = V1(2) + Va(pk,c) = —A -z + T - c;

— The simulation function S(pkp, z, w) = S1(z)+S2(pkp, w) = —A-x+Tp-w;

— Rejection Samplings: In Proof;, rejects and restarts at the first step of Proof;
if ||2]|co > 20+/m, where z = Z(sk,y,c). In Verify, rejects if ||z]| 0 > 20/m.

— The hidden function E and recovery function F. We set n = 2m and m =
O(nlogq). According to Lemma 1, the signer uses B € pkp and (z,x,) €
Ly X Zg* to compute r = b = BT [ZW +e. While the designated verifier can

us
use its trapdoor Rp € skp to recover (z,,x,) and proceed with the Verify.

We observe that the settings satisfy the following properties in Section 3.1.

1. The challenge space S, = {v : v € {—1,0,1}*,|v||y < k} is a commutative
group, with operation ® = +, while @ = — is its inverse, under mod 3;

2. If ¢; and co are uniformly distributed in S, then ¢; ® cs is also uniformly
distributed in S.. This also holds true for w; ® wo and ¢; ® wy;

3. The verification function V(pk, z,¢) = —A-z+ T - c = Vi(z) + Va(pk, ¢) and
simulation function S(pkp,z,w) = —A -x+ Tp-w = S1(z) + Sa(pkp, w),
where ® = + is a commutative group operation for their ranges;

4. The verification function V;(z) = —A - z and simulation function Sy (z) =
— A -x have additive homomorphism, i.e., Vi(z1) ©Vi(22) = —A-z1 — A -z5 =
—A - (z1 +22) = Vi(21 @ 22) and S1(z1) © S1(22) = —A -x3 — A -xy =
—A-(x1+x2) = S1(x1Px2), where @ = + is a commutative group operation.
Besides, the homomorphic operation can be efficiently computed;

5. Given sk matched with pk and ¢, there exists Zy (sk,c¢) = —S - ¢ such that
Vi(Zy (sk,c)) = —A-(=S)-c=A-S-c =T-c = Va(pk, ¢). Meanwhile, given
skp matched with pk, and x, there exists Zg(skp,w) = —Sp - w such that
Sl(Is(SkD,’LU)) =—-A. (7SD) -w=A" SD W = TD W = SQ(ka7U)).

As a result, the above settings constitute a lattice-based instantiation of the
Extended Type-T* Canonical Identification, satisfying the following security.

Theorem 9. Under above settings, the lattice-based Extended Type-T* Canoni-
cal Identification is secure against special impersonation under key only attack in
Definition 5, if IWEq n.m—n, and SISq n.m+k,a are hard, where x = D, satisfies

o = 0(n'®) and d = 20(k\/Togm + 2y/m) = O(n25).

Proof. We defer it to Appendix 1. O
The constrains for parameters are same with those in the pioneering work
on lattice-based signatures [19]. According to TripleRing generic construction,
the above Extended Canonical Identification can be converted into the strong
DVRS scheme with unforgeability, signer anonymity, and non-transferability.
To the best of our knowledge, it represents the first strong DVRS scheme
based on assumptions conjectured quantum-resistant (including previous schemes
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that only met weak designated verifier property). Due to page limitations, we
only provide settings based on the most common lattice assumptions and tools
here, and leave discussions on sizes and further optimizations for future work.

5 Conclusion

In this paper, we discuss the primitive of Designated-Verifier Ring Signatures.
After clarifying strong definitions, we present a generic construction, and two
efficient instances. There are several appealing problems left for investigating:

1. Enrich Instantiations. In lattice-based settings, we only instantiated our
generic construction using the most commonly used building blocks over
standard lattice. In fact, employing existing techniques such as [3,14,27] can
reduce both key sizes and signature sizes. Moreover, instantiation based on
other post-quantum assumptions, such as code, would also be valuable.

2. Extend to Multi Designated Verifier. We focus on the single-verifier
setting. However, in real-world applications, multi designated verifiers are
always involved, as seen in the literature on signatures [10,31] and ring sig-
natures [13]. Extending ours construction to multi-verifier would also be an
interesting direction for future work.
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A Proof for Theorem 1

Proof. The proof of this theorem follows the Equation (1), (2), (3) in Section
3.2. We present more details there, where Sim is marked in cyan for simplicity.

The core of Sign (Sim) involves using V5 and Ss to aggregate public keys
{pk;}j%x and corresponding challenges and randomnesses into Y;' and W' as
the Response-Ring in Fig. 2. After obtained the challenge ¢/, it computes the
missing ¢’ = ¢ © (@), ¢;'), Where ¢ = ®§V:1 ¢;' should hold. Then, the
signer (designated verifier) computes z; and r (w/ , 2/ and 7’) by employing the
Extended Type-T* Canonical Identification and c,’.

During the verification, Y, and W’ are reconstructed from all public keys
and corresponding challenges and randomnesses. Then, the designated verifier
computes the challenge ¢/, which should be equal to ®j\/:1 ¢;’. Above all, correct-
ness of TripleRing relies on that of Extended Type-T* Canonical Identification
and hidden/recovery functions. It holds when these blocks are sound. (]

B Proof for Theorem 2

Proof. Suppose A is a PPT algorithm that can break the unforgeability w.r.t.
insider corruption of TripleRing, we use it to construct a PPT algorithm B that
can break the special impersonation under key only attack of its underlying
Extended Type-T* Canonical Identification. Meanwhile, B obtained the public
parameters pp and a public key pk* from its challenger C/.v

Setup. B chooses an index i* g [1, gx], and generates (pki,;ki) + KeyGen(pp)
for i € [1,qx) A% # i* and (pkp,skp) «+ KeyGen(pp). B sets pk;. = pk*, and
returns pp and a set of public keys S := {EEZ}ZL and pkp to A.

Oracle Simulation. B returns to the oracle queries as follows.

— Random Oracle H(): On query, B chooses ¢ <3 S, and returns c.

— Corruption Oracle OCOr(BE): On input a public key kai, B aborts if ¢ = i*.
Otherwise, adds it to a corrupted set Scor and returns J(Z

— Signing Oracle Os;ign (R, ka,?JRT,M): On input the public key ring R =
{pky,- - ,pky}, the designated verifier’s public key pkp, the signer’s public
key EIZW, and a message M, B aborts if Elz,r ¢ R. Otherwise, B invokes the
Corruption Oracle to obtain s~k,T, and returns X' as follows:

1. If w # i*: X < Sign(R, pkpy, sk, M);

2. If m = i*: B chooses z, {¢;}I_) g Se, {w;}}| =5 Se,z <=5 S, to com-
pute Y = Vi(2) © O;L, Va(pkj, ¢ ®w;), W = 81(2) © O, Sa2(pkp, )
and r. B sets H(R, pkp, M, Y, W) = ®;V:1 ¢; in the random oracle, fails
and aborts if the value has been set. Otherwise, X' = (r, {¢; }jy:l, {w; };VZI)

— Simulation Oracle Osin (R, pkp, M): On input a message M, the public
key ring R = {pkq,---,pky} and designated verifier’s public key pkp. B
invokes the Corruption Oracle to obtain skp and returns X' as follows:

1. Iif 7 #4*: X« Sim(R, pkp, skp, M);
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2. If m = i*: B chooses 2/, {¢}} ]} s S, {w)}L, <=5 Se, 2’ =5 S, to com-
pute Y = Vi(z )®@j:1 Va(pk;, ci@w}), W = S (x )@@j 1 S2(pkp, w})
and r’. B sets H(R, pkp, M, Y, W) = ®§V 1 ¢ in the random oracle, fails
and aborts if the value has been set. Otherwise, ¥ = (/, {c}} 1L, {w}}}.,).

Challenge. When A returns the corrupted set Scor and a forgery message-
signature pair (M*,Z* = (r*,{cj};= 1,{w )), B fails and aborts if pk* ¢

Scor- Otherwise, pk™ € Scor, B uses the pubhc key ring R* = {Elzij 1 C Scor
containing pk* = ERZ-J,* to compute Y*, W* in Verify. B rewinds to the point that
M*,R* Y* W* is queried to H and returns a different ¢’ instead. Then, B will
obtaln another signature X% = (r#, {c# [P {wf};vzl), which satisfy:

N
Y* =Vi(z @OVQ pkz,c]@wJ @@VQ 1707&@)10;%)7
Jj=1

N
(") © () Sa(pkp, w)) = Si(z¥) © @Sz(ka,wJ )
j=1 j=1

Since ®J G F ®] 1 ] , there exists at least ¢} # c CIf it s the index j*
that holds ¢}. = cj*, aborts. With probability 2 we have c; . F P 7, and

N
Vi(z") © () Valpk,,, ¢; @ w;)

=V @2 @ @2 1O 2 & ® 2Z) O Va(pk”, ¢j @ W)
=V1(Z") ® Va(pk™, cj+ @ wj~)

N
S1(z") © (D Valpk;,, w
j=1

=Nz X D DX DX D DA,) O Va(pk™, wik)
=Vi(X") © Va(pk™, wj-),

where ZF = Ty (sk;,c}), X = Ig(ski,w?) for i € [I,N]Ai # j* and Z* =
FRE G DZL L BZL B BE AT =" RAR DAL B O
- @ X¥. Similarity, we can obtain ( ﬁ,Z#7X#) from X#. Then, B returns

( PRI AND. G ?:,Z# X#) to its challenger C.

Probability Analysis. We analyze the probability of success in the above sim-
ulation, where gc, ¢sig, ¢sim, gn are the number queries to the Ocor, Osign, Osim, H.

Ocor: The probability of success in the first query is (1 — —) and that of the

second query is (1 — —) ( ) After ¢, queries, the probability of success

_ 1 1 (1= 1 — Gk—Ce _
S(l Qk) (1 Qk—1> (1 Qk_QCJFl) qu 1= Qk
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Osign: The probability of success in the first query is at least (1 — %), and

that of the second query is (1 — I‘%i}LI) (1 — qI}:SJ-rll ) After ¢g;4 queries, the proba-

- o _ an —dntl) (1] _ Gntdsig—l _ 2eig(gnHsig—1)
bility of success is (1 ISCI) (1 1S ) (1 1Sl ) 21 [Sel :

Osim: The probability of success in the first query is at least (1 — Igihl)’ and

that of the second query is (1 - \%I) (1 - q‘*:;‘l). After qsim queries, the proba-

13 3 _ 49n_ _ gn+1 . _ ghtgsim—1 _QSiWL(QhJFQSim_l)
bility of success is <1 ISC|> (1 5] ) (1 ST ) >1 e

The probability of pk* # ;/)\IZ in the challenge space S is

’ij

(17 1 )(17 1 ) (17 1 )_qquch
qk — ge qk —qe— 1 gk —ge—N+1 Qk —qe

Above all, if the probability of a successful forgery by A is €, then the probability
of B does not abort before rewinding is

qc (Jsig((Ih + Qsig — ]-) qsim(qh + qsim — ]-) qr — qc — N
e = €(l — —)(1 — 1-— 1-— .
(=3 |Sel : |Sel ) P

According to the Generalized Forking Lemma [2], the probability of a successful
rewinding is at least <€ if |Sc| > 8¢ /ep, and the reduction algorithm runs in time
Tr - (8¢n/€B) - In(8N/eg) if A runs in time Tg. As a result, we have s #* c}%
with probability at least 1/N, and the probability for B to break the special
impersonation is ¢ > £(1 — %)(1 — 7q”g(qh+qm‘gil))(1 - —q“"L(qh;rTmFl))(l —

[Sel
qkq_kq—cq_cN)' Here, S| > max{qsig(qn + qsig — 1), @sim(qn + gsim — 1)} is required,

and a successful forgery is constructed. O

|Se

C Proof for Theorem 3

Proof. We present how to construct an algorithm B, which achieves perfect signer
anonymity against full key exposure in the random oracle model.

Setup. B runs pp ¢+ Setup(1*) to obtain public parameters pp. Then, B gener-
ates (pk;, sk;) < KeyGen(pp;r;) using randomness r; for i € [1, gx], and (pkp,skp)
KeyGen(pp). BB returns pp and a set of public keys S := {pk;}?*, and pkp, to the
algorithm A;.

Oracle Simulation. B returns to the oracle queries as follows.

— Random Oracle #(): On query, B chooses ¢ +g S, and returns c.

— Signing Oracle Osig, (R, pkp, pk,, M): On input the public key ring R =
{pkq, -+, pky} and designated verifier’s public key pkp,, signer’s public key
pk,., and a message M, B returns X' <+ Sign(R, pkpy, sk, M).

— Simulation Oracle Os;, (R, pkp, M): On input the public key ring R =
{pky, -+ ,pky} and designated verifier’s public key pk, and a message M,
B returns X’ + Sim(R, pkp, skp, M).
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Challenge and Output. A; gives B a message M*, a public key ring R* C S
with pk; ,pk; € R*. B chooses z, {cj}j-vzl s SC,{wj}é-Vzl —3 Se,x ¢ Sy to
compute Y = Vi(2) ©@ Q7L Va(pk;, ¢; @ wy), W = Si(x) © Q1 Sa(pkp, w;)-
B sets H(R, pkp, M, Y, W) = ®§V:1 ¢; in the random oracle, aborts if the value
has been set. Otherwise, ¥ = (z,z,{c;}}_,, {w;}}L,). B returns X along with
randomnesses {rj}g-kzl to Az, and picks a random bit b. Finally, As outputs a
bit &’. Since b is not involved in the generation of the signature X, As can only

succeed with a probability of one-half.

Probability Analysis. We analyze the probability of success in the above sim-
ulation, where gsig, gsim, gn are the number queries to the Osign, Osim, H.

Osign: The probability of success in the first query is at least (1 — %), and

that of the second query is (1 — éﬁ) <1 — ql’gll). After qq;q queries, the proba-

bility of success is (1 — I%I) (1 — q|’29t|1> (1 - 7‘1"'7‘?:‘-‘771) > 1_951'9(4'7;0(1'“9*12_

Osim: The probability of success in the first query is at least (1 - é’il ), and

that of the second query is (1 — %) (1 — q":,;‘l). After gsim queries, the proba-

- . _ an I N _ Ghtgsim—1 _ sim(qntdsim=1)
bility of success is (1 ISCI) (1 5] ) (1 [Se] ) > 1 1Sl ’

Here, [Se| > max{qsig(qn + @sig — 1), @sim(qh + gsim — 1)} is required, and
B does not abort, indicating that no unbounded adversary can achieve a non-
negligible advantage greater than random guessing. O

D Proof for Theorem 4

Proof. We prove that the distributions of Sign(pk,., M, R, pk,) and Sim(M, R, pkp)
are identical for a given message M, public key ring R, and designated verifier’s
public key pkp. This ensures perfect non-transferability.
Setup. B runs pp ¢+ Setup(1}) to obtain public parameters pp. Then, B gen-
erates (pk;,sk;) < KeyGen(pp) for i € [1,qx] and (pkp,skp) < KeyGen(pp). B
returns pp and a set of public keys S := {pk,}?, and pkj, to the algorithm A.
Oracle Simulation. B responses queries for H, Osign, Osim as the Theorem 3.
Challenge and Output. A gives B a message M*, a public key ring R* C S,
and designated verifier’s public key pkp,, and B returns X}, € {X, X }. Consider
the distributions of Xy = Sign(R, pkp, skx, M) = (r, {¢;}}21, {w;}}L,) and £y =
Sim(R, pkp, skp, M) = (', {cj} 1L, {w}}L,), where r = E(pkp, 2z, ) and 1’ =
E(pkp, 2, xL).

Since Y, {¢;}jzn s Se,{w; i, s Se,{x;}}, +s S, during the gener-
ation of Xy, and 1, 27, {c }j£n <5 Se, {W]}jzn s Se, and ¢, {2 }j2r <5 Sy
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during the generation of Xy, we have the following indistinguishable relations.

{cjtign mA{cj}jzn, cmC, CW*C®(®CJ)~C ®(®cj)—cﬁ,
J#T J#T
- / _ Il s roo . .
{wj}jzn =AW }jtn, wx =1, = wy, since n,c;, w, are all uniform;
Zn & 2h, since zp = Z(SKn, Yr, Cr @ wy) with uniform y,, ¢ @ wy, and 2/ <g Se;

!
T

!
T

Tr & 2, since 2 = Z(skp, ¢, w)) with uniform ¢, w), and x, g Sy;

r = E(pkp, zr, ¥x) = 17" = E(pkp, 2., 20)

As a result, the unbounded adversary A cannot distinguish Yy and X, and can
only succeed with the probability of one-half.

Probability Analysis. The probability of success in the above simulation is the
same as Theorem 3. It requires | S| > max{qsiq(qn+3sig—1), sim (qn+sim—1)},
where ¢gig, @sim, qn are the number queries to the Osign, Osim, H. Then, B does
not abort, indicating that no unbounded adversary can achieve a non-negligible
advantage greater than random guessing. (]

E Proof for Theorem 5

Proof. Suppose that the adversary A can break the special impersonation under
key only attack. The algorithm B is given a DL problem (g, y) for a cyclic group
G of prime order p. B returns pp = (G, p,g) and pk =y to A.

A returns (¢M), 21 ) 22 where ¢P) # ¢, and satisfies

€) (€ ) @ LM € o @
gk =g ke g pkiy T = g7 pkpy
As a result, B can extract the secret key sk = M and skp = M
@ —cm w®@ _p (D
as the solution to the DL problem, which is contradicted with Definition 6. [

F Proof for Theorem 6

Proof. Suppose that A is a PPT adversary breaking the unforgeability w.r.t.
insider corruption of TripleRing-EC, we use it to construct a PPT algorithm B
that can break the unforgeability of TripleRing-DL.

Setup. B is given the system parameter pp’ and a set of public keys S from the
challenger of TripleRing-DL, and picks a random generator u <—g G and returns
pp = (pp’,u) to the adversary A.

Oracle Simulation. B responses queries for Random Oracle H() with ¢ <3 S..
B responses queries for Signing Oracle Osig, and Simulation Oracle Osim as fol-
lows. It firstly uses the corresponding oracles in TripleRing-DL to obtain X# =
(r#, {chE };yzl, {w;%}é\[:l), and runs the Verify algorithm of TripleRing-DL to ob-

tain Y# = Vi (z#)0Q’L, Va(pk;, ¥ ow?), W# = $1(a#)0QL, Sa(pkp, wl), c =

cfﬁ + -+ cﬁ, A= wf& + -4+ wﬁ. Then, B runs the NIMA.PROOF to obtain
the proof n7. Finally, B returns X% = (r# Y. # W# A% [I7).
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Challenge. In the challenge phase, the adversary A returns a signature X* =
(r*, Y, Wk A* IT*) w.r.t. a message M* and the public key ring R*. Accord-
ing to the statistical witness-extended emulation of NIMA, B could run an
extractor £ to extract (¢f + wj,---,cy + wy), and (wi, -+ ,wk) such that
P* =Y 0 (Vi(z2)7" = Q)L Valpk;, ¢ +wj), and @ = Wy © (Si(a3)) ™" =

YRR
@;-V:l Sa(pkp,wy). Then, B computes (ci,---,cy) and returns the signature
2% = (r*, {e; )L, {w;}))) to the challenger of TripleRing-DL.
Above all, the unforgeability w.r.t. insider corruption of TripleRing-EC can
be reduced to that of TripleRing-DL. (|

G Proof for Theorem 7

Proof. Suppose that A is a PPT adversary breaking the signer anonymity of
TripleRing-EC, we use it to construct a PPT algorithm B that can break the
signer anonymity of TripleRing-DL.
Setup. B is given the system parameter pp’ and a set of public keys S from the
challenger of TripleRing-DL, and picks a random generator u <—g G and returns
pp = (pp’,u) to the adversary A.
Oracle Simulation. B responses queries for H, Osign, Osim as in Theorem 6.
Challenge and Output. In the challenge phase, A; gives (M*,R*, pk; ,pk;, )
to B. Similar with in Theorem 3, B sends them to its challenger and uses the
received (r*, {cj ;V:l,{w;-‘ ;V:I) to compute X* = (r*,Y*, W*, A* IT*) via the
signing algorithm of TripleRing-EC, and sends X* along with randomnesses
{ri}is, to As. Finally, Ay outputs a bit o', which could be used by B to send
to its challenger and break the anonymity of TripleRing-DL.

Above all, the signer anonymity of TripleRing-EC can be reduced to that of
TripleRing-DL. O

H Proof for Theorem 8

Proof. Suppose that A is a PPT adversary breaking the signer anonymity of
TripleRing-EC, we use it to construct a PPT algorithm B that can break the
signer anonymity of TripleRing-DL.

Setup. B is given the system parameter pp’ and a set of public keys S from the
challenger of TripleRing-DL, and picks a random generator u <—g G and returns
pp = (pp’,u) to the adversary A.

Oracle Simulation. B responses queries for H, Osign, Osim as in Theorem 6.
Challenge and Output. In the challenge phase, A gives (M*,R*, pk; ,pk;, )
to B. Similar with in Theorem 4, B sends them to its challenger and uses the
received (r*, {c; é\’:l,{w;‘ ;\7_1) and (r*,{c}’ ;»Vzl,{w;’ ;V:1) to compute X§ =
(r*,Y*, W*, A* II*) via the signing algorithm of TripleRing-EC and X} =
(r* Y W A* IT*') via the simulation algorithm of TripleRing-EC. Then,
B’s challenger returns X} € {X%, X7} to B, and B forward it to A. Same as in
Theorem 4, the distributions of Xj and X7 are indistinguishable.
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Above all, the non-transferability of TripleRing-EC can be reduced to that
of TripleRing-DL. O

I Proof for Theorem 9

Proof. Suppose that the adversary A can break the special impersonation under
key only attack. We use it to construct a polynomial time algorithm B that can
break either LWE, j, ;n—n,, Normal Form or SIS, ,, m+x,q Normal Form, where
X = D, satisfies ¢ = O(n'®), and d = 20 (rky/Togm + 2y/m) = O(n2?).

B is given the parameters q,n,m,k,o, and matrices A’ < ZZX(mfn) and
U ¢ Z**. Then, it has A = [I,|A’] € Z'*™ and A = [A[|U] € Z§* (™7

B chooses E < D7**therefore, each column of AT - E = [L,[|A]T - E is
a LWEg n m—n,y instance for x = D,. According to Definition 9, it is compu-
tationally indistinguishable from a random element from Zg”Xk. Then, B sets

pk =T =A-E = A-E+ U, where E/ = EE] such that ||E'[|o < ov/logm.
k

Finally, B returns pp = (¢,n, m,d, o, A, pk) to A.
A returns (¢, z() ¢®) 2?)), where ¢V # ¢®), and satisfies

AW LT = A @ LT @

Combining it with T = A - [fE
k

} we have

A BE:| . (c(l) _ 0(2)) =T. (c(l) _ C(Q)) — A (Z(l) . Z(Q)) _A. |:Z(1) 6 z(2):|
k

(1) _ 22 .
Namely, s = [P] (e —c@) — [Z 0 z ] is a solution for A -s = 0, while
k

s is also a non-zero vector (At least, the last k rows of s is (c(!) — c¢(?)) #£ 0).
Besides, according to chosen criteria and rejection samplings, we have the
matrix E € D?** such that |E|~ < oy/logm with high probability, challenges
cM e eS8, ={v:ve {101} |v|i < &}, and vectors z1),z(?) satisfy
12|00 < 20/, |22 < 204/m. As a result, there is a norm bound

[slloe < 2K04/logm + 4ov/m = 20(k\/logm + 2v/m)

Here, according to [19], we have 0 = 12-d-x-y/m, and k < k < n, m = 2n for the
Normal Form. As a result, s is a solution for SIS, ;, m+x,q¢ Normal Form, where

d = 20 (rky/Togm + 2y/m) = O(n25), which is contradicted with its hardness. [J
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