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Motivation
Designing Provable and Practical Post-quantum Signature Schemes NOT from Lattices

1. Digital Signature:
— Message integrity and identity authentication.
— Quantum Computers ⇒ Need to be resistant to classical/quantum adversaries.
— Schemes standardized by the NIST in July 2022:{

Dilithium and Falcon: Structural Lattices-based, unknown new attack.
SPHINCS+: Hash-based, larger sizes.

2. Demand in diversity ⇒ NIST’s new call for proposals in Sept 2022.
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Contribution
Sigma Protocols and Signature Schemes from LRMC

We found there is a hard problem in linear algebra, named

Low-Rank Matrix Completions (LRMC)

could be used in post-quanum crypto designing
{

Sigma Protocol
Signature Scheme – NIST’s call

Goal: Completing the left to the
right ( low-rank, e.g., rank = 1).
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Contribution
Sigma Protocols and Signature Schemes from LRMC

In short, we present
1. A Sigma Protocol from LRMC, with soundness error 2/3
2. The first protocol + Sigma Protocol with Helper [Beu20]

= LRMC-based Sigma Protocol, with soundness error 1/2
3. The second protocol + recent techniques + Fiat-Shamir Transformation [FS86]

= LRMC-based Signature Scheme, with competitive sizes and simple settings
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Outline
1 Preliminaries

▶ Preliminaries

▶ LRMC-based Sigma Protocols (with Helper)

▶ LRMC-based Signature Scheme



Hard Problems
MinRank and 1-MinRank

MinRank Problem
Input: An integer r, and s + 1 matrices M0; M1, · · · , Ms ∈ Matk,l(F)

Output: α1, · · · , αs ∈ F, such that

rank(M0 +
s∑

i=1
αiMi) ≤ r

Features:
• NP-Complete, and hard for random instances ⇒ post-quantum (details later).
• Simple: Based on linear algebra computations, and has high efficiency.
• Extensively studied: Cryptanalysis of Rainbow, GeMSS, HFE/HFEv-, etc.
• 1-MinRank Problem: a special case, requires the rank of M1, · · · , Ms are 1.
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Hard Problems
Low-Rank Matrix Completion (LRMC)

Low-Rank Matrix Completion Problem
Input: An integer r, and a matrix M ∈ Matk,l(F) with s unfilled entries

Output: α1, · · · , αs ∈ F, such that completing the remaining to a matrix
with rank ≤ r

• A toy example, r = 2, k = 3, l = 4,F = F7:

M =

 1 2 4 3
2 4 ∗ ∗
∗ ∗ 5 2

 , M1 =

 1 2 4 3
2 4 4 3
1 3 5 2

 , M2 =

 1 2 4 3
2 4 1 6
3 6 5 2


We have rank(M1) = 3 > 2, rank(M2) = 1 ≤ 2, and (1, 6, 3, 6) is a solution.

• Equivalence [Der18]: “The instances can be mutual transformed.”
MinRank ⇔ 1-MinRank ⇔ LRMC
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Hard Problems
The Complexity Comparisons
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Building Blocks
3-move Sigma Protocol [CD95]

Ronald Cramer

Ivan Damg̊ard

Prover(x,w) Verifier(x)

(com,Pstate)← P1(x,w) com

ch ch←$ C

rsp← P2(Pstate, ch) rsp

V(x, com, ch, rsp) = Accept/Reject

Goal: Prove the knowledge w such that (x, w) ∈ R
• Completeness
• Soundness
• Special Honest-Verifier Zero-Knowledge (SHVZK)
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Building Blocks
From 3-move Sigma Protocol to Sigma Protocol with Helper [Beu20]

Ward Beullens

Helper(x)

seed←$ {0, 1}λ

aux← Setup(seed)

Sends seed to Prover and aux to Verifier
Prover(x,w, seed) Verifier(x, aux)

(com,Pstate)← P1(x,w, seed) com

ch ch←$ C

rsp← P2(Pstate, ch) rsp

V(x, aux, com, ch, rsp) = Accept/Reject

Helper: Trusted by the Prover and the Verifier.
Goal: Prove the knowledge w such that (x, w) ∈ R.
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Building Blocks
From 3-move Sigma Protocol to Sigma Protocol with Helper [Beu20]

Goal: Prove the knowledge w such that (x, w) ∈ R.

Security properties of Sigma Protocol with Helper:
• Completeness. Prover holds w is always Accepted.
• 2-Special Soundness. The witness w can be efficiently extracted, i.e., there

exists a polynomial-time knowledge extractor E to use two valid transcripts

(x, aux, com, ch, rsp) and (x, aux, com, ch′, rsp′).

— Soundness error p: Any efficient adversary A(1λ, x) passes the protocol with
prob. ≤ p + negl(λ).

• HV Zero-Knowledge. There exists a polynomial-time simulator S(x) that
produces transcripts indistinguishable from ones by Prover(x, w).
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Building Blocks
Removing the Helper – Using Cut-and-choose technique [KKW18] to simulate the Helper

Jonathan Katz Vladimir Kolesnikov Xiao Wang

Prover(x, w) Verifier(x)
For i ∈ {1, · · · , s} :

seedi ←$ {0, 1}λ comi, auxi,∀i Samples I ⊂ {1, · · · , s}, |I| = τ

aux ← Setup(seedi) I, {chi}i∈I Checks auxi = Setup(seedi),∀i /∈ I

comi and rspi as before {seedi}i/∈I , {rspi}i∈I Validates (x, auxi, comi, chi, rspi)i∈I
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Building Blocks
From Sigma Protocol to Signature Scheme – Using Fiat-Shamir Transformation [FS86]

Amos Fiat Adi Shamir

com

Prover(x, w, msg) ch = H(com, msg) =⇒ (com, rsp) is a signature for msg

rsp The transcripts of the simulated protocol
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Our Sigma Protocol
How to obtain a LRMC instance

Prover obtains a LRMC instance for crypto construction, as follows:
1. Prover chooses a random matrix A = (ai,j)← Matk,l(F), s.t. rank(A) = r ;
2. Prover removes s entries (ai1,j1 , ai2,j2 , · · · , ais,js) to obtain a partially filled

matrix A−.
Let the public key is A−, and the witness is (ai1,j1 , ai2,j2 , · · · , ais,js) = (ait,jt) for
1 ≤ t ≤ s. Then, the completed matrix A is a solution for the LRMC Problem.

Recall: Low-Rank Matrix Completion Problem
Input: An integer r, and a matrix M ∈ Matk,l(F) with s unfilled entries

Output: α1, · · · , αs ∈ F, such that completing the remaining to a matrix
with rank ≤ r
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Our Sigma Protocol
How to design a Zero-Knowledge Protocol to prove the Relation – Hiding the witness

Prover proves a relation (x, w) = (A−, ai1,j1 , ai2,j2 , · · · , ais,js) in zero-knowledge,
as follows:

1. Prover breaks it into A− = A−
1 + A−

2 , where A−
1 , A−

2 are also partially filled,
s.t. A−

1 is 1 at its filled entries, and divides ait,jt = αit,jt + βit,jt for 1 ≤ t ≤ s ; 1 2 4 3
2 4 ∗ ∗
∗ ∗ 5 2


︸ ︷︷ ︸

A−

=

 1 1 1 1
1 1 ∗ ∗
∗ ∗ 1 1


︸ ︷︷ ︸

A−
1

+

 0 1 3 2
1 3 ∗ ∗
∗ ∗ 4 1


︸ ︷︷ ︸

A−
2

2. Prover completes A−
1 ( A−

2 ) with αi1,j1 ( βi1,j1) to obtain A1 ( A2), i.e.,

A1 =

 1 1 1 1
1 1 αi1,j1 αi2,j2

αi3,j3 αi4,j4 1 1

, A2 =

 0 1 3 2
1 3 βi1,j1 βi2,j2

βi3,j3 βi4,j4 4 1


We have A = A1 + A2.
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Our Sigma Protocol
How to design a Zero-Knowledge Protocol to prove the Relation – Stern-like framework [Ste93]

Based on: A = A1 + A2 ⇒ PAQ = (PA1Q + Y) + (PA2Q−Y),∀ P, Q, Y
Prover(x = A−, w = (ait,jt

)) Verifier(x = A−)
c0 := Com(r0, P, Q, Y)

c1 := Com(r1, PA1Q + Y) com := (c0, c1, c2)

c2 := Com(r2, PA2Q−Y) ch ch←$ {0, 1, 2}

If ch = 0, then reveals c1, c2

rsp := (r1, r2, PA1Q + Y, PA2Q−Y)
If ch = 1, then reveals c0, c2

rsp := (r0, r2, P, Q, Y, β = (βit,jt
)) rsp Accpet/Reject?

If ch = 2, then reveals c0, c1

rsp := (r0, r1, P, Q, Y, α = (αit,jt
)) 17 / 27



Our Sigma Protocol with Helper
How to decrease the soundness error from 2/3 to 1/2 [Beu20]

Based on: A = A1 + A2 ⇒ PAQ = (PA1Q + Y) + (PA2Q−Y),∀ P, Q, Y
Helper: P, Q, Y← PRG(seed), c0 := Com(r0, P, Q, Y), c1 := Com(r1, PA1Q + Y)

Prover(x = A−, w = (ait,jt
), seed) Verifier(x = A−, (c0, c1))

c2 := Com(r1, PA1Q + Y)

com := c2

ch ch←$ {0, 1}

If ch = 0, then reveals c1, c2

rsp := (r1, r2, PA1Q + Y, PA2Q−Y)
If ch = 1, then reveals c0, c2

rsp := (r0, r2, P, Q, Y, β = (βit,jt
))

rsp Accpet/Reject?
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Our Sigma Protocol with Helper
Further Optimizations [Beu20, BESV22]

We take similar tricks to optimize the sizes [Beu20, BESV22], includes:
• Using cut-and-choose technique [KKW18] to drop the pre-processing, and

remove the helper.
• Using Merkle Tree to compress and recompute the commitments.
• Using Binary Tree to optimize the transmission of seeds.
• Using several MPC tricks to improve parallel repetitions.

Pierre de Fermat

“I have a proof of the theorem, but there is not
enough space in this margin.”– Pierre de Fermat

Please check our paper for more details :)

19 / 27



Our Sigma Protocol with Helper
Further Optimizations [Beu20, BESV22]

We take similar tricks to optimize the sizes [Beu20, BESV22], includes:
• Using cut-and-choose technique [KKW18] to drop the pre-processing, and

remove the helper.
• Using Merkle Tree to compress and recompute the commitments.
• Using Binary Tree to optimize the transmission of seeds.
• Using several MPC tricks to improve parallel repetitions.

Pierre de Fermat

“I have a proof of the theorem, but there is not
enough space in this margin.”– Pierre de Fermat

Please check our paper for more details :)

19 / 27



Outline
3 LRMC-based Signature Scheme

▶ Preliminaries

▶ LRMC-based Sigma Protocols (with Helper)

▶ LRMC-based Signature Scheme



Our Signature Scheme
From Sigma Protocol to Signature Scheme – Using Fiat-Shamir Transformation [FS86]

com

Prover(x, w, msg) ch = H(com, msg) =⇒ (com, rsp) is a signature for msg

rsp The transcripts of the simulated protocol

To sign on the message µ, Signer executes the following steps:
1. Runs the first move of the Sigma Protocol to generate com ;
2. Computes ch = H(com, µ) ;
3. Runs the third move of the Sigma Protocol to obtain rsp, and the signature

on µ is (com, rsp).
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Our Signature Scheme
Parameters: [BESV22] (PQCrypto’22) is the state-of-the-art, [Cou01] (AC’01) is the pioneering

Parameter Set I II III
λ [ Security parameter ] 128 192 256

q [ Order of finite field F = Fq ] 16 16 16
(k, l) [ Dimensions of matrix A ] (14, 14) (17, 17) (20, 20)

r [ Rank of matrix A ] 4 6 6
s [ Unfilled number of matrix A ] 108 130 208

Public Key Size (B)
This work 44 80 96
[BESV22] 60 (by seeds) 104 (by seeds) 128 (by seeds)
[Cou01] 114 (by seeds) 169 (by seeds) 232 (by seeds)

Signature Size (KB)
This work 24 54 97
[BESV22] 24 54 97
[Cou01] 55 118 221

PK + Sig
Storage (KB)

This work 24 54 97
[BESV22] 34 72 137
[Cou01] 65 136 261
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Our Signature Scheme
Comparsions

• Comparing with MinRank-based schemes [BESV22, Cou01].
— Storage-Lower: LRMC-based avoid seeds for the PK generation, leading a

significant reduction in total storage costs of the public key and signature when
actual signing, e.g., more than 30% for the Parameter Set I.

— Time-Shorter: LRMC-based avoid linear combinations and matrix-vector
multiplications between hundreds of matrices ∈ Matk,l(Fq) to recover the PK,
saving considerable time.

— Conceptually-Simpler: LRMC-based are more intuitive and succinct, only
one (partially completed) matrix A ∈ Matk,l(Fq) in the system parameters,
instead of s + 1 matrices in the same dimensions.

• Comparing with NIST Standards.
— SPHINCS+: Sizes are in the same magnitude, e.g., λ = 128

◦ 44B vs 32B in Public Key Size
◦ 24KB vs 17KB in Signature Size

— Dilithium and Falcon: The underlying hard problem LRMC is NP-Complete,
providing stronger security guarantee than problems over Structural Lattices.
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Retrospect and Prospect
Following the Research Philosophy of Modern Cryptography [GSC+23]

Conclusions: In this work, we present
1. A new NP-Complete problem – LRMC, for crypto designing.
2. A 3-move ZK proof for the solution of LRMC.
3. Decreasing the soundness error from 2/3 to 1/2.
4. A signature scheme from LRMC.

Future work:

Self-Cultivation



New Construction:
{

ZK protocol for LRMC with smaller error.
Trapdoor LRMC-based signatures.

New Foundation: New hard problems with better sizes/efficiencies.

New Definition:
Formalizing new primitives, and instantiating
them from assumptions (LRMC, Lattice, Pairing).
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Q&A
Thank you for listening!

Jiaming Wen
Website: https://jiamiwen.github.io

E-mail: wenjm@whu.edu.cn
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